

The BIANCA biophysical model/MC code: calculations of radiation-induced cell damage in view of hadrontherapy treatments

Francesca Ballarini^{1,2}, Chiara Aimè¹, Mario P. Carante^{1,2}, John J. Tello^{1,2,3}

¹University of Pavia, Physics Department, Pavia, Italy 2 INFN (Italian Institute of Nuclear Physics), Section of Pavia, Italy ³State University of Campinas, Brazil

francesca.ballarini@unipv.it

Pavia's bridge

MCMA2017, Naples, October 17th 2017

The BIANCA model/code

(BIophysical ANalysis of Cell death and chromosome Aberrations, reviewed in Ballarini & Carante 2016, Radiat Phys Chem 128)

Cell death

- 2 parameters *with biophysical meaning*
- cell death *and chromosome aberrations*
- mechanism-based

Energy deposition

DNA (cluster) damage

(Iethal) **chromosome** <u>aberrations</u>

The model - assumptions *(version BIANCA II, Carante & Ballarini 2016, Front Oncol 6:76)*

irradiation

• radiation induces **DNA "Cluster Lesions" (CLs)***,* so that each CL breaks the chromosome in 2 independent fragments

the mean number of CLs per Gy and per cell is the 1st adjustable parameter,

mainly dependent on radiation quality but also modulated by the target cell clusters of Double-Strand

Breaks (Iliakis & coll 2016)

T6-DSB

DNA damage

• chromosome fragments lead to chromosome aberrations following either **un-rejoining (with probability** *f***),** or **distance-dependent incorrect** 1 **rejoining**

the fragment unrejoining probability f is the 2nd parameter,

dependent on the target cell

chromosome damage

cell death

• some chromosome aberrations (**dicentrics, rings and deletions** visible in Giemsa) lead to **clonogenic cell death**

DICentric Ring DELetion

The model – simulation of target and projectile

Reality…

nucleus of human fibroblast with «chromosome territories» *(Bolzer et al. 2005)*

…and simulation:

simulated nucleus of human fibroblast with chromosome territories and arm domains *(Tello et al. 2017, DNA Repair)*

• *chromosome territory = union of cubic voxels (side: 0.1 m; no. of voxels proportional to the DNA content)*

- *different nucleus shapes and dimensions*
- *different genomes (human, hamster, rat)*

 X - and γ -rays: CLs uniformly distributed in the cell nucleus

(low-energy) light ions like p and He: CLs distributed along segments

• *particles/cell: <n> = DS/(0.16LET) CLs/particle = CLGy-1 cell-1 0.16 LET S -1*

heavier ions like C: CLs distributed also radially

Model testing - X-rays

V79 cells, 'gold standard' in radiobiology *(exp. data: Carrano 1973)*

Aberration yields (3 Gy)

(simulation error: ≤1%)

Cell survival (3 Gy)

exp. $S = 0.38 \pm 0.01$ *sim.* S = 0.39

(model parameters: 1.7 CLGy-1 cell-1

AG1522 cells, normal human fibroblasts *(exp. data: Cornforth & Bedford 1987)*

Aberration yields

(Ballarini & Carante 2016, Radiat Phys Chem 128)

Cell survival

, f=0.08) (model parameters: 1.3 CLGy-1 cell-1 , f=0.18)

the model can reproduce cell survival and different aberration types by X-rays

Model testing - protons

parameters: *f (fragment un-rejoining probability) unchanged with respect to X-rays CL yields adjusted separately for each LET (energy)*

• *dicentrics, rings and deletions lead to cell death not only for X-rays, but also for protons*

• *the approach also works for Carbon ions*

Dependence of Cluster Lesions on radiation quality

Applications for hadrontherapy:

prediction of cell death & chromosome damage for a proton SOBP @CNAO

simulations with 1-mm step

increase of biological effectiveness in the distal region \Rightarrow RBE = 1.1 may be sub-optimal?

Model refinement *(in coll. with University of Campinas, Brazil):*

Probability of chromosome-fragment rejoining as a function of fragment distance

Concluding remarks...

BIANCA, **mechanism-based** model with *2 parameters, dealing with both cell death (* \rightarrow effectiveness on tumor) and chromosome aberrations (\rightarrow damage to healthy tissue)

- *severe DNA damage and m-level 'proximity effects' play an important role in chromosome-aberration induction*
- *dicentrics, rings and deletions lead to clonogenic cell death not only for X-rays but also for ions*
- *database of CLs full predictions at 'any' depth of hadrontherapy beams*
- *using RBE=1.1 may be sub-optimal*

INFN projects 'ETHICS' and 'MC-INFN'

...and future developments:

- focusing on the interface with FLUKA
- extending the CL data-base to other cell lines

……… --------------------- -------------------------------

• testing the exponential distance-dependence for higher LET

Backup slides

Radial shift

 $r_{min} = 2$ nm
 r_{max} [µm]=0.05-E[MeV/u]^{1.7}

(Scholz and Kraft, 1992; Kiefer and Straatch, 1986)

V79 protons Belli et al. 1998

Model testing – Carbon ions

(C. Aimè 2017, Thesis; exp. data from Furusawa et al. 2000)

• *the approach works also for Carbon ions (S = fraction of cells without lethal aberrations)*

Applications for hadrontherapy *From biological dose to physical dose*

 $S(D) = exp [-(\alpha D + \beta D^2)]$

 $y(D) = \alpha D + \beta D^2$

high LET \rightarrow quadratic term negligible

aberrations are good candidates as cell «lethal lesions»

**LET = Linear Energy Transfer Stopping power (keV/m)*

How modelling? *(examples)*

Chromosome aberrations

Breakage & Reunion theory *(Lea, 1946):* irradiation \rightarrow chromosome breaks \rightarrow un-rejoining or (pairwise) incorrect rejoining of breaks *close in space and time*

Cell death

- *photons: Linear-Quadratic model,* $S(D) = exp(-\alpha D \beta D^2)$
- *ions: Local Effect Model (e.g. Scholz & Kraft 1994):* the damage in a small subvolume *(nm)* of the cell nucleus is determined by the energy deposition in that subvolume, \dot{a} *independent of particle type & energy:* $N_{\text{ion}}/V \equiv V_{\text{ion}} = V_{\text{X}} \equiv N_{\text{X}}/V$

 \Rightarrow lethal lesions/cell for ions are calculated from the survival to X-rays: $N_{\text{ion}} = \frac{1}{V_{\text{ion}}} \left(d(x,y,z) \right) dV = \frac{\int -\ln S_x(d)}{V} dV$ $d(x,y,z) \equiv local$ *dose*

Main open questions

- *features of 'critical' DNA damage leading to important effects including cell death and chromosome aberrations (Double-Strand Break clusters are good candidates but...what clustering level?)*
- *role of spatial distribution of such critical damage in the cell nucleus*
- *link between chromosome aberrations and cell death*
- *application of this information for cancer hadrontherapy*

Why modelling?

- to interpret existing experimental data
- to make "full predictions" where there are no data

Characterization of DNA Cluster Lesions -I

CL/m as a function of LET

• **dependence on LET:** CLs increase with LET (in a L-Q fashion), consistent with the increase of energy deposition clustering

• **dependence on cell line:** for a given radiation quality, normal cells have more CLs than radioresistant cells

• **application:** (LQ) fitting of CLs \Rightarrow cell death and aberrations can be predicted also at LET values for which there are no experimental data

Applications for mechanisms

comparison between CLs and DNA fragments with different dimensions

(Carante et al. 2015, Radiat Environ Biophys)

• *finding: dependence of CLs on radiation quality (=particle type and LET) is analogous to that of DNA fragments with dimensions of 0.2-1 kilo-base-pair*

• *hypothesis: these fragments are good candidates as DNA critical damage (confirming Rydberg et al. 1996)*

(Ou et al. 2017, Science 2017)

Predicting the survival of AG01522 cells from the survival of V79 cells

(M. Carante 2017, PhD Thesis; exp. data from Chaudhary et al., Kavanagh et al., Hamada et al.)

Main simulation steps

Dose and CL/(Gy·Cell)

CL/Cell

distributed in the cell nucleus according to radiation quality

- identification of chromosomes and chromosome-arms hit by each CL • un-rejoining (with probability f) or (mis-)rejoining of chromosome fragments
- scoring of chromosome aberrations
- repetition for many runs

Surviving fraction S (D)

Modello BIANCA e simulazioni 0000000

Comparison with chromosome aberration data

Microbeam (EU project "BioQuaRT", coordinated by H. Rabus)

E (MeV) LET (keV/m) ions/cell aberrations/cell *(exp.)* CLs/particle

aberrations were interpreted in terms of CLs/particle

• the model/code can predict chromosome aberrations by different radiations in different cells

Cell death & chromosome damage for a proton SOBP @LNS, Catania

